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Introduction

Understanding and predicting future discoveries and scientific achievements is an emerging field 

of research, which involves scientists, businesses, and even governments.

This topic falls under the emerging field of Science of Science (SciSci) which aims to understand, 

quantify and predict scientific research dynamics and the drivers of the dynamics in different 

forms such as the birth and death of scientific fields and their subfields; that can be identified by 

tracking the changes of research trends and dynamics.



Objective & Outline

The objective of this study is to detect and map scientific trends. 

Revealing these trends requires us to exploit contextual features in the scientific research domain 

and understand its dynamics. In this study we propose a simple framework to facilitate the 

exploration of scientific trends and their evolution, utilizing contextual features and deep neural 

embeddings.

Our proposed framework is then applied in a case study to understand the path of scientific 

evolution in artificial intelligence. In this study, we show how the trends and topics in science can 

be extracted using document vectors and extraction of context. 



The Literature

● Co-word analysis & topic modeling

○ [6],[7],[8],[9],[10],[11]

● Word and document embedding and clustering

○ [12],[13],[15],[16],[17],[18]

● Embedding methods are superior to traditional methods like TF-IDF for clustering tasks.

● A framework to detect, track and visualize the trends in alluvial like diagrams is out of focus 
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Methodology

1) Data Collection

● Dataset A (Word embedding model training data): 

○ Abstracts and titles

○ Scopus search in titles, abstracts, and keywords  with ``artificial intelligence'' query

○ Yielding 310k records

● Dataset B (Case study and analysis data):

○ Abstracts and titles

○ 3 mainstream journals: 

■ ``Artificial Intelligence'' (2575 records)

■ ``Artificial Intelligence Review'' (890 records)

■  ``Journal of Artificial Intelligence Research'' (1006 records)



Methodology

2) Preprocessing

● Common data pre-processing: Carried out on both datasets, including data cleaning, 

removal of common abbreviations and noun level lemmatization.

● Analysis data preprocessing: (Carried out on dataset B. )

○ Removal of stop words.

○ N-gram keyword tagging and creation of auxiliary labeling dataset.

○ Splitting data to temporal periods: [1970,1989] , [1990,1994], [1995,1999], 

[2000,2004], [2005,2007], [2008,2010], [2011,2013], [2014,2016], and [2017,2019].



Methodology

3) Word Embedding

● Represent the data in vector space.

● FastText is used to extract word vectors.

● Dataset A is used to train the model.

● Embeddings are in 50 dimensions.

● No further dimensionality reduction is used.



Methodology

4) Document Embedding

● Simple document averaging

● SIF [28]

5) Document Clustering

● Hierarchical agglomerative clustering.

● Assist in number of clusters by 

dendrogram.



Methodology

6) Cluster Labeling

● Document keywords

● Wikipedia labels

○ Applications

○ Approaches

7) Research Trend Mapping

● The final stage of the proposed 

framework comprises the mapping of the 

evolution of scientific trends.



Results (1/4)

Wiki Application Est. 2011-2013 Wiki Application Est. 2014-2016

Intelligent agent & ML Bio-inspired computing & Decision support 
system

auto. planning and scheduling & Nonlinear 
control

auto. planning and scheduling & Nonlinear 
control

KM & Decision support system AI & PR

auto. planning and scheduling & auto. 
reasoning

CV and subfields & Automatic target 
recognition

auto. planning and scheduling & AI in video 
games

auto. planning and scheduling & Nonlinear 
control

NLP & ML NLP & AI

auto. planning and scheduling & ML auto. planning and scheduling & auto. 
reasoning

PR & Intelligent control Intelligent agent & Strategic planning

Nonlinear control & auto. planning and 
scheduling

Nonlinear control & auto. planning and 
scheduling

PR & ML PR & Nonlinear control

Nonlinear control & PR auto. planning and scheduling & AI
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Results (4/4)
Tag ( TF-IDF score)  - 2017-2019

1 * cluster (0.226), clustering (0.194), ba (0.156), twsvm (0.148), support vector machine (0.147), neural network (0.119), si (0.117)

2 * queen (0.537), kemeny (0.224), top (0.173), bound (0.158), borda (0.153), mining (0.15), item (0.148)

3 * logic (0.369), semantics (0.218), answer set (0.203), formula (0.179), cp net (0.177), revision (0.152), asp (0.151)

4 * market (0.257), sale (0.226), firm (0.226), car (0.164), customer (0.157), kidney (0.157), bike (0.157)

5 * knee (0.319), face recognition (0.253), acl (0.209), gait (0.198), gait pattern (0.176), facial (0.176), survey (0.172)

6 * planning (0.272), heuristic (0.237), plan (0.201), abstraction (0.181), search (0.177), planner (0.16), monte carlo tree search (0.13)

7 * sentiment analysis (0.268), survey (0.245), text (0.179), metadata (0.154), area (0.14), indian language (0.133), citation (0.124)

8 * word (0.271), entity (0.211), sentiment (0.176), vietnamese (0.135), sentiment analysis (0.13), semantic (0.124), target (0.122)

9 * voting (0.233), voter (0.218), cost (0.16), mirl (0.15), player (0.142), good (0.141), preference (0.139)

10 * inconsistency (0.231), semantics (0.156), attack (0.153), belief (0.153), argument (0.143), graph (0.139), argumentation framework 
(0.136)

11 * robot (0.401), team (0.217), trust (0.17), teammate (0.139), belief (0.121), revision (0.12), norm (0.112)



Conclusion

● This framework and labeling method facilitates the identification of trends and assist us in 

understanding the way fields of research are evolving. 

● This became possible through the top term and Wikipedia application labeling methods. 

● Wikipedia documents can be used to have an estimated embedding location of a field of 

research or an application in vector space. 

● Wikipedia approaches are not as useful as Wikipedia application for this case study and 

purpose. 

➢ In future works, more advanced clustering methods are planned to be used as an extension 

to this work, benefiting from deep neural networks in clustering and dynamic embedding 

and clustering techniques. Additionally, labeling can benefit from the vector space 

similarities to enhance TF-IDF weights.
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